2017 Sustainability Lab Project

Presented by:

Rodrigo Errea Ben Housman Kyle Hurst

May 18, 2017

Contents

- Overview
- Supplier Landscape
- Framework and Analysis
- Recommendations and Next Steps
- Works Cited
- Appendix

Overview

Allagash Problem Statement

Allagash has committed to purchasing <u>1 million lbs</u> of grains annually from Maine farmers by 2021

- Currently, Allagash purchases ~100,000 lbs of local grains annually, which represents approximately 2% of their total grains purchased
- Grain prices from local Maine farmers are approximately 2-3x higher than prices from farmers in Wisconsin (where Allagash currently purchases ~98% of its grains)

Allagash Sixteen Counties Beer (Local Beer Brewed Using Only Maine Grains)

Overview **Executive Summary**

Given our <u>preliminary</u> analysis, if Allagash were to purchase an extra 900,000 lbs of Maine grains then the company could create approximately 20 new local jobs and reduce carbon emissions by 55,000 kg of CO2 eq at an additional purchasing cost of \$390,000

	Difference (New Supplier Mix minus Business As Usual)					Minimize Costs - Optimal Supplier Mix					Business As Usual ¹				
	Cost Impact			Sustainability Impact		Cost Impact		Sustainability Impact		Cost Impact			Sustainability Impact		
	Supply <i>(lbs)</i>	Price (\$/lb)	Cost (\$/yr)	Local Jobs Created <i>(count)</i>	Global Warming (kg CO2 eq)	Supply (lbs)	Price (\$/lb)	Cost (\$/yr)	Local Jobs Created <i>(count)</i>	Global Warming (kg CO2 eq)	Supply <i>(lbs)</i>	Price (\$/lb)	Cost (\$/yr)	Local Jobs Created <i>(count)</i>	Global Warming (kg CO2 eq)
Barley															
Midwest	-700,000	\$0.00	-\$245,000	n/a	-693,581	5,950,000	\$0.35	\$2,082,500	n/a	5,895,440	6,650,000	\$0.35	\$2,327,500	n/a	6,589,021
Local	700,000	\$0.06	\$512 <i>,</i> 656	15	655,024	800,000	\$0.72	\$579,178	17	748,598	100,000	\$0.67	\$66,521	2	93,575
Wheat															
Midwest	-200,000	\$0.00	-\$60,000	n/a	-186,072	700,000	\$0.30	\$210,000	n/a	651,251	900,000	\$0.30	\$270,000	n/a	837,323
Local	200,000	n/a	n/a	5	169,352	200,000	\$0.90	\$180,157	5	169,352	0	n/a	n/a	0	0
Oats															
Midwest	0	\$0.00	\$0	n/a	0	900,000	\$0.30	\$270,000	n/a	634,591	900,000	\$0.30	\$270,000	n/a	634,591
Local	0	n/a	n/a	0	0	0	n/a	n/a	0	0	0	n/a	n/a	0	0
Total	0	\$0.05	\$387,813	20	-55,277	8,550,000	\$0.39	\$3,321,834	22	8,099,232	8,550,000	\$0.34	\$2,934,021	2	8,154,509

Summary Table

Notes:

¹ Business as usual assumes 100,000 lbs of grains are purchased in Maine.

Contents

• Overview

• Supplier Landscape

- Framework and Analysis
- Recommendations and Next Steps
- Works Cited
- Appendix

Supplier Landscape

Capacity Constraints

- Maine's primary agricultural export is potatoes
 - Shifted from grains in the 20th century
- 1.65M lbs of Barley are produced in Maine annually (as of 2012)
 - The majority of the Barley is used for feedstocks
 - Not malt quality
 - Farmer techniques, inadequate storage facilities, and low demand constrain growth

Maine only has two malt houses

- These malt houses are limited to 400,000 lbs of malted grain per year per malt house
- Maine Malt House is currently working to increase capacity by 500%
- Recent increase in red wheat production for bakeries
 - White wheat is not produced in significant quantities in Maine currently

Contents

- Overview
- Supplier Landscape
- Framework and Analysis
- Recommendations and Next Steps
- Appendix

Preliminary Data Analysis

We analyzed suppliers cost, labor and emissions data to obtain reasonable inputs for our model.

Optimization Modeling

We built two **optimization models** using the data to inform Allagash of the optimal grain mix while considering various constraints (local supply requirement, farmer and malting capacities, grain mix, etc.)

Quantifiable Results

We then summarized and quantified the: **(1) economic** and **(2) sustainability** implications of increasing local Maine grain supply by 9x in the next five years versus Allagash's "business as usual" case.

Framework & Analysis Key Inputs

Framework & Analysis Why Optimization?

T

- Optimization is a common analytical tool used to determine the "optimal", or best, mix of options given various internal rules/targets and external limitations (constraints)
- An optimization model can provide Allagash with the lowest cost (i.e. best) mix of Maine and Midwest suppliers to meet its goal of 1M lbs of local grains

Other Examples of Optimization Modeling

Finance, Investment Portfolios

Retail, Supply Chain Analytics

Assumptions – Cost and Local Economy

Cost Assumptions

- Grain and transportation prices are constant
- Prices provided by Allagash are accurate
- All dollars are in "today's" dollars

Local Economy Assumptions

- 50% of revenue contributes to wage expenses
- Average worker salary \$12.29 [See Works Cited 7]
- 2,087 annual work hours/worker
- 1.5 standard job multiplier for indirect job creation
- Job creation in Maine will not impact jobs at Midwest supplier since Allagash is a small customer for them.

Local Economy Impact

				Jobs creation
	(Units)		Local	Data Source
Wage Expense	(% of Revenue)	[1]	50%	**Assumption
Average Worker Salary	(\$/hr)	[2]	\$12.29	University of Maine Enterprise Budgets
Work Hours per Year	(hrs/yr)	[3]	2,087	U.S. Office of Personnel Management
Salary per Year	(\$/yr)	[4]	25,649	[4] = [2] * [3]
Jobs Equivalent	(Direct Jobs/\$)	[5]	0.000019	[5] = [1] / [4]
Job Multiplier	(Total Jobs/Direct Jobs)	[6]	1.5	Standard assumption
Total Job Creation	(Total Local Jobs/\$)	[7]	0.000029	[7] = [5] * [6]

Assumptions - Emissions

- Due to supplier process data constraints, all agricultural emissions are assumed the same for commercial and local suppliers [See Works Cited 2, 3, 4, 5, 6]
- Agriculture production per grain assumed industry standard values associated with analogous climates [2]
- Rail fuel efficiency assumed to be 423 short ton-miles per gallon
- Line haul efficiency assumed to be 6.5 miles per gallon
- Diesel fuel emissions assumed to be 22.38 lbs CO2 per gallon
- Red wheat malting process assumed to produce 30% less emissions than barley malting process due to reduced energy requirements associated with red wheat malting processes [1]
- Blue Ox and Maine Malt House assumed to have max annual capacity of 400,000 lbs of malted grain [7]
- Maine Malt House expansion expected to achieve additional production capacity in 2019

Optimization Model 1 – Minimize Cost

Model 1: Minimize total economic costs of purchasing grains while meeting local sourcing targets

Local Sourcing Target

Optimization Model 2 – Minimize Impacts

Model 2: Minimize sustainability impacts while meeting local sourcing targets

Optimization Models – Supplier's information

Each supplier faces capacity constraints and impacts both the environment and the local economy differently

Decision Variables: How much Sustainability Impacts per to buy from each supplier supplier Detailed Supplier Inputs/Outputs Barley Xi Price Cost GW Capacity LE (lb)(\$/lb) (\$) (lb/year) (CO2/lb) (Jobs/pound) 6,050,000 \$2,117,500 0.35 15,000,000 Briess 0.99 0 \$0 Maine Malthouse 0 0.78 700,000 0.94 0.00023 \$465,650 0.67 Blue Ox 700,000 700,000 0.94 0.00023 \$0 10.00 Supplier 4 0 0.94 0.00023 \$0 Supplier 5 0.70 0.94 0.00023 0 \$0 Supplier 6 0.57 0 0.94 0.00023 Ś0 Supplier 7 0 0.90 0.94 0.00023 \$0 Supplier 8 0.36 0 0.94 0.00023 \$0 Supplier 9 0.94 0 0.94 0.00023 Supplier 10 0.70 Ś0 0 0.94 0.00023 6,750,000 \$2,583,150 6,649,546 \$0.38 Total 157.5

Capacity per supplier

Optimization Models Results

Both models recommend the best quantity per grain type and per supplier to achieve the firm's local targets while satisfying its constraints

Detailed Supplier Inputs/Outputs

			Barley							
Name	Category	Xi	Price	Cost	Capacity	GW	LE	Name	Category	
		(lb)	(\$/lb)	(S)	(lb/year)	(CO2/lb) (Jo	obs/pound)			
Briess	(Midwest)	5,750,000	0.35	\$2,012,500	15,000,000	0.99	0	Briess	(Midwest)	90
Maine Maltho	use (Local)	300,000	0.78	\$234,819	700,000	0.94	0.00023	Maine Gra	in (Local)	
Blue Ox	(Local)	700,000	0.67	\$465,650	700,000	0.94	0.00023	Supplier 3		
Supplier 4	-	0	10.00	\$0	-	0.94	0.00023	Supplier 4		
Supplier 5	-	0	0.70	\$0	-	0.94	0.00023	Supplier 5		
Supplier 6	-	0	0.57	\$0	-	0.94	0.00023	Supplier 6		
Supplier 7	-	0	0.90	\$0	-	0.94	0.00023	Supplier 7		
Supplier 8	-	0	0.36	\$0	-	0.94	0.00023	Supplier 8		
Supplier 9	-	0	0.94	\$0	-	0.94	0.00023	Supplier 9	-	
Supplier 10	-	0	0.70	\$0	-	0.94	0.00023	Supplier 10) -	
Total		6,750,000	\$0.40	\$2,712,969		6,633,021	225.0	Total		9
Midwest Total		5,750,000	\$0.35	\$2,012,500	15,000,000	5,697,274	0	Midwest To	tal	9
Local Total		1,000,000	\$0.70	\$700,469	1,400,000	935,748	225	Local Total		

			Oats				
Name	Category	Zi	Price	Cost	Capacity	GW	LE
		(lb)	(S/Ib)	(S)	(Ib/year)	(CO2/lb)	(Jobs/pound)
Briess	(Midwest)	900,000	0.3	\$270,000	1,000,000	0.71	. 0
Aurora Mills	(Local)	0	1.00	\$0	700,000	0.57	0.00023
Maine Grains	(Local)	0	0.99	\$0	-	0.57	0.00023
Supplier 4	-	0	0.80	\$0	-	0.57	0.00023
Supplier 5	-	0	0.77	\$0	-	0.57	0.00023
Supplier 6	-	0	0.69	\$0	-	0.57	0.00023
Supplier 7	-	0	0.48	\$0	-	0.57	0.00023
Supplier 8	-	0	0.41	\$0	-	0.57	0.00023
Supplier 9	-	0	0.88	\$0	-	0.57	0.00023
Supplier 10	-	0	0.76	\$0	-	0.57	0.00023
Total		900,000	\$0.30			634,591	0.0
Midwest Total		900,000	\$0.30	\$270,000	1,000,000	634,591	. 0
Local Total		0	#DIV/0!	\$0	700,000	0	0

\$0

900,000

0

0

0

#DIV/0!

Red Wheat

Contents

- Overview
- Supplier Landscape
- Framework and Analysis
- Recommendations and Next Steps
- Works Cited
- Appendix

Recommendations

Ultimately, Allagash's decision about investing in local grains boils down to the company's values. The 1M lb local grain initiative will cost about \$390,000 more than if Allagash were to purchase those grains from the Midwest; however, we estimate that it will create approximately 20 more local jobs and ~55,000 fewer kg of carbon emissions.

One consideration that fell beyond the scope of our research but is worth evaluating is the potential branding effect of purchasing more local grains, which could generate positive marketing and reception from consumers as Allagash positions itself as a more sustainable craft brewery. This branding could potentially increase revenues, thereby offsetting the higher cost

Roadmap – Most Economical

55 tons CO2 emissions mitigated

Assuming no capacity change for each supplier

Increased material cost of \$390,000

Maximizes malted barley purchase from Maine malting facilities

\$7,100 / ton CO2 mitigated

Roadmap to 1M lbs of Local Grains (Most Economical Strategy)

Roadmap – Most Sustainable

126 tons CO2 emissions mitigated

Assuming no capacity change for each supplier

Increased material cost of \$675,000

Maximizes rolled oat purchase from local suppliers

\$5,500 / ton CO2 mitigated Roadmap to 1M lbs of Local Grains (Most Sustainable Strategy)

Future Work

Upstream Supply Chain Optimization

- Coordinate with Suppliers to:
 - Discuss efficient GHG tilling practices
 - Share grain knowledge
 - Discuss operational sustainability practices

• Facilitate Grain Storage Cooperative

- Discuss investment into grain storage
- Enter risk sharing contracts to incentivize capacity investment
- Communicate with suppliers to facilitate planned crop expansion of specific grain strains

Downstream Supply Chain Optimization

- Examine packaging to:
 - Reduce carton footprint
 - Maximize use of recycled bottles

GHG emissions by percentage of total emissions. Courtesy of The Carbon Footprint of Fat Tire Amber Ale, 2008

Future Work – Supply/Demand Dynamics

- As Allagash starts demanding more local grains, the production will increase and the learning curve will help costs and prices go down.
- However, it will also increase the value of land cultivation, which might ultimately increase costs.
- Finally, as production goes up in response to higher demand, the imbalance of Supply and Demand will also increase, thus increasing the prices to find a new equilibrium.
- Allagash should consider all the feedback loops in the system and look for ways to make the reinforcing loop the dominant one.

PASSION

LOVING BEER AND DOING WHAT WE LOVE.

1111

Contents

- Overview
- Supplier Landscape
- Framework and Analysis
- Recommendations and Next Steps
- Works Cited
- Appendix

Works Cited

[1]	The Climate Conservancy, "The Carbon Footprint of Fat Tire [®] Amber Ale." p. 33, 2008.	
[2]	M. Rajaniemi, H. Mikkola, and J. Ahokas, "Greenhouse gas emissions from oats , barley , wheat and rye production," <i>Agron. Res. Biosyst. Eng.</i> , no. 1, pp. 189–194, 2011.	
[3]	J. H. Kløverpris, N. Elvig, P. H. Nielsen, A. M. Nielsen, O. Ratzel, and A. Karl, "Comparative Life Cycle of Malt-based Beer and 100 % Barley Beer," p. 66, 2009.	Assessment
[4]	Y. Gan, C. Liang, X. Wang, and B. McConkey, "Lowering carbon footprint of durum wheat by diversifying systems," <i>F. Crop. Res.</i> , vol. 122, no. 3, pp. 199–206, 2011.	cropping
[5]	M. Collison, "Understanding carbon footprinting for cereals and oilseeds Introduction," Aberdeen, MD,	2012.
[6]	R. L. Desjardins and D. E. Worth, "Carbon Footprint of Agricultural Products -A Measure of the Impact of Production on Climate Change," <i>Agriclture and Agri-Food Canada</i> , 2010.	Agricultural
[7]	T. Noyes, "Conversation with Tristan Noyes, e-mail," Maine Grain Alliance, 2017	
[8]	"Soil & Agronomy Workshop," Univ. Maine Coop. Ext., 2017.	
[9]	R. Wilson and J. Roberts, "Action Plan for Agriculture and Food System Development," North. Community Invension 1, 2014.	est. Corp.,
[10]	U. D. of Agriculture, "Maine Census of Agriculture 2012," Natl. Agric. Stat. Serv., pp. 1–2, 2012.	
[11]	G. Keough, "MAINE POTATO SIZE AND GRADE REPORT," Concord, NH, 2017.	
[12]	U. S. D. of Agriculture, "2012 Census of Agriculture - County Data," Natl. Agric. Stat. Serv., pp. 227–250,	2012.
[13]	U. S. D. of Agriculture, "Northeast Crop Values 2016," <i>Natl. Agric. Stat. Serv.</i> , vol. 203, pp. 1–3, 2017.	
[14]	"2014 Census of Horticultural Specialties - MAine," Natl. Agric. Stat. Serv., vol. 3301, no. December,	2015.
[15]	Bland, A. (2013). Small-scale grain farmers: Can local grains be profitable? Retrieved May 15, 2017, from http://www.slate.com/articles/life/food/2013/06/small_scale_grain_farmers_can_local_grains_be_profitable	e.html
[16]	"Countries Compared by Agriculture > Workers per hectare. International Statistics at NationMaster.com", <u>Wo</u> <u>Resources Institute</u> . Aggregates compiled by NationMaster. Retrieved from http://www.nationmaster.com/co info/stats/Agriculture/Workers-per-hectare	orld ountry-

Contents

- Overview
- Supplier Landscape
- Framework and Analysis
- Recommendations and Next Steps
- Works Cited
- Appendix

Effects of 100% Regional Sourcing

Barley emissions reduced by 5%

Red Wheat emissions reduced by 9%

Rolled Oat emissions reduced by 18%

276 tons CO2 emissions potentially mitigated

Barley Footprint Analysis (Briess)

Barley Footprint Analysis (Local)

Red Wheat Footprint Analysis (Briess)

Red Wheat Footprint Analysis (Local)

Rolled Oats Footprint Analysis (Briess)

Rolled Oats Footprint Analysis (Local)

